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a b s t r a c t

Actuarial senescence is characterized by an increase in mortality rate with increasing chronological age.
The reliability theory of senescence proposes that organisms’ vital functions can be modelled as a suite
of damageable, irreplaceable elements (typically genes or their products) that protect their bearer from
condition-dependent death so long as at least one of the elements remains intact. Current incarnations
of the reliability theory of senescence are continuous-time models with no explicit evolutionary com-
ponent. Here, we use elementary probability theory and evolutionary dynamics analysis to derive a
discrete-time version of the reliability theory of senescence. We include three variations on this theme:
the ‘Series’ model in which damage to any of n elements results in death, the ‘Parallel’ model, in which
damage accumulates in random order and damage to all n elements results in death, and the ‘Cascade’
(multi-stage) model, which is like the Parallel model, except the irreparable damage necessarily follows
a strict sequence. For simplicity, we refer to the state of having multiple elements as ‘redundancy’, but
this does not imply that the elements are necessarily identical. We show that redundancy leads to actu-
arial senescence in the Parallel and Cascade models but not in the Series model. We further demonstrate
that in the Parallel and Cascade models, lifetime reproductive output (a potential proxy for fitness in
populations with discrete generations) is a positive but decelerating function of redundancy. The posi-

tive nature of the fitness function leads to the prediction that redundancy and senescence should evolve
from non-redundant, non-senescing ancestral populations; however, the deceleration of the fitness func-
tion leads to the prediction that this evolution towards increased redundancy will eventually be limited
by mutation-selection balance. Using evolutionary dynamics analysis involving the discrete-generation
quasispecies equation, we confirm these two predictions. Finally, we show that a population’s equilib-
rium redundancy is sensitive to the environmental conditions that prevailed during its evolution, such

ortali
as the rate of extrinsic m

. Introduction

Actuarial senescence is characterized by an increase in mortal-
ty rate with increasing chronological age, reflecting general bodily
eterioration (Kirkwood and Austad, 2000). Since “ageing is a dele-
erious trait” (Bonsall, 2006, p. 131), and extremely widespread in
he tree of life, the questions of how senescence evolved, and why
t has not been purged from populations, are of perennial interest
o evolutionary biologists.
Early evolutionary theories of senescence (Wallace, ca. 1865;
eismann, 1889) were group-selectionist in nature, proposing that

ndividuals senesce and eventually die in order to make space and
esources available for future generations composed of younger,
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more vigorous individuals. However, such arguments are circular
because, if ageing is one of the reasons why individuals must be
replaced, they presuppose that individuals must deteriorate over
time. Moreover, they fail to explain how a population of altru-
istically senescing individuals would not be subject to invasion
by more slowly senescing or even non-senescing invaders. Recent
studies have placed group-selectionist arguments on a stronger
theoretical foundation by emphasizing instances where senescence
appears to be “selected for its own sake” (Mitteldorf, 2004; Longo et
al., 2005) as a result of kin- or group-level benefits including payoffs
to close relatives, and reduced local extinction risk due to commu-
nicable diseases or chaotic population dynamics (Mitteldorf, 2006,
2009).

Nevertheless, individual-based theories of the evolution of
senescence have come to the fore. Chief among these are the

‘mutation accumulation’ theory (‘MA’; Medawar, 1946, 1952), and
the ‘antagonistic pleiotropy’ theory (‘AP’; Williams, 1957). These
related theories argue that senescence occurs due to the deleterious
late-life action of specific genes that remain unpurged in organ-
isms’ genomes because the force of selection is very weak in old

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:robert.laird@uleth.ca
mailto:sherratt@ccs.carleton.ca
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ge-classes (MA), or because they have beneficial effects earlier in
ife (AP; also see Charlesworth, 1994; Hamilton, 1966).

Despite the cogency of these arguments, and clear evidence for
radeoffs (e.g., Charmantier et al., 2006), the current evidence for
pecific genes with late-acting deleterious effects is mixed at best
Flatt and Promislow, 2007; Kirkwood, 2005; Leroi et al., 2005;
hostak, 2006). Additionally, these theories do not account for
lready well-established proximate mechanisms of senescence, in
articular those that are linked to the buildup of somatic damage.
amaging agents include intrinsically generated metabolic byprod-
cts, such as reactive oxygen species, and extrinsic factors, such as
ltraviolet radiation, among other agents (Arking, 1998).

A third important evolutionary theory, the ‘disposable soma’
heory (‘DS’; Kirkwood, 1977; Kirkwood and Holliday, 1979), argues
hat senescence arises as a consequence of organisms optimizing
esource allocation when there is a tradeoff between somatic main-
enance and reproduction. Encouragingly, unlike MA and AP, DS
ees damage rather than actively deleterious genes as the direct
ource of senescence, and therefore helps to forge an important
ink with established proximate causes of general bodily deteri-
ration. Moreover, the theory makes a clear distinction between
amage to the germ line (inherited) and damage to the soma (not

nherited). However, at its simplest, DS assumes that the struc-
ures and processes needed to maintain the soma have already
volved, so that dealing with the problem of somatic damage is
ainly a matter of diverting more or fewer resources to repair.

ertainly, allocation tradeoffs are likely to play a role in deter-
ining within-generation senescence patterns, but the question

emains of how such tradeoffs evolved in the first place. For exam-
le, one might ask if repair were cost free, then do any other factors

imit the efficiency of somatic maintenance. Of equal importance,
S also makes no provision for these maintenance structures to
ecome damaged themselves. Finally, most variants of DS would
ppear to predict that increased energy input should mitigate the
aintenance–reproduction tradeoff, which is at odds with impor-

ant work on caloric restriction (reviewed in Mitteldorf, 2001; but
ee Shanley and Kirkwood, 2001).

A wholly different approach to understand the evolution of
enescence is one based on reliability theory. Reliability theory is
branch of applied statistics that deals with the prediction of sur-
ivorship, failure rates, senescence, and longevity (Barlow et al.,
965), typically in machines. Gavrilov and Gavrilova (2001) have
dapted reliability theory to help understand senescence in bio-
ogical systems. In their theory, organisms’ vital functions can be

odelled as suites of parallel, redundant elements that are subject
o random damage (e.g., genes or gene products). Here, ‘redun-
ancy’ simply refers to the condition of having multiple elements,
nd does not necessarily imply that the elements are identical
although this is the convention we adopt; see below). As long as
ne of the elements of a vital function remains undamaged, that
unction is preserved and the organism lives. However, once all the
lements of a vital function are damaged, that function ceases to
ork and the organism dies. Thus, in reliability theory, harm arises

rom accumulated damage to beneficial genes or gene products,
ather than from late-acting actively deleterious genes as in MA
nd AP. In this theory senescence – that is, an increase in mortality
ate with age – can occur only when a vital function has more than
ne element associated with it (Gavrilov and Gavrilova, 2001). Fol-
owing criticisms that reliability theory was non-evolutionary (e.g.,
ee Pletcher and Curtsinger, 1998), we have recently showed that
uch redundancy readily evolves from ancestral populations with

o redundancy (Laird and Sherratt, 2009).

Evolutionarily based models of reliability theory have several
eatures that recommend them over previous theories of senes-
ence: (1) They generate mortality curves that exhibit (i) rapidly
ncreasing mortality early in life, (ii) asymptotic mortality late in
tems 99 (2010) 130–139 131

life (i.e., mortality ‘plateaus’; but also see Coe et al., 2002), and (iii)
‘mortality compensation’, in which the mortality plateaus of popu-
lations from different environments level off at the same asymptote
(Gavrilov and Gavrilova, 2001; Laird and Sherratt, 2009). (2) They
envision accumulated damage to genes or gene products, rather
than time-specific deleterious effects of functioning genes, as the
primary driver of physiological decay and condition-dependent
death (Szilard, 1959), which is more in line with established prox-
imate causes of ageing (see above). (3) They see somatic reliability
as a function of redundancy, which is a well-known feature of bio-
logical systems in general and genetic architecture in particular
(Conant and Wagner, 2003; Nowak et al., 1997). And (4) evo-
lutionary models of the reliability theory of senescence explain
how these traits can evolve to a polymorphic equilibrium from
a non-senescing ancestral population (Laird and Sherratt, 2009).
(Note that point (4) does not imply that shorter-lived varieties
evolved from longer-lived varieties, but rather that the relation-
ship between mortality risk and age evolved from being constant
to monotonically increasing.)

Previous incarnations of reliability theory have considered
continuous-time models. In Gavrilov and Gavrilova’s (2001) formu-
lation [Eq. (1)] for example, a particular vital function is composed
of n irreplaceable, redundant elements, each of which has a contin-
uous failure rate of k. Their model does not explicitly treat repair
or regeneration of elements. However, even mechanisms of repair
and regeneration are subject to damage. It follows that there must
be some rate of irreparable damage that may be somewhat less
than the rate of repairable damage. The realized damage rate k can
be envisioned as the former, with no loss of generality. As long as
at least one of an individual’s elements remains undamaged, the
individual survives. When they are all damaged, the vital function
stops working and the individual dies. In this particular case, the
expected survivorship of a particular element is given by simple
exponential decay, e−kt. Therefore, the probability that the element
is damaged by time t is simply 1 − e−kt, and the probability that all
of the elements are damaged is (1 − e−kt)n. From this, it is clear that
the expected intrinsic survivorship of individuals with n elements,
as a function of time is

lint(t) = 1 − (1 − e−kt)
n
. (1)

This paper makes two main contributions to the development
of the reliability theory of senescence:

First, we extend the approach of Gavrilov and Gavrilova (2001)
and Laird and Sherratt (2009) by considering three alternative types
of element/genetic architecture. Appealing to the standard anal-
ogy of an electrical circuit, Eq. (1) describes a system in which the
elements are effectively in parallel. It therefore seems natural to
ask what happens when elements are in series, i.e., when dam-
age to a single element causes the vital function to fail and the
individual to die. Thus, in addition to the ‘Parallel’ model, we also
present a ‘Series’ model (also see Gavrilov and Gavrilova, 2001).
Along with the Series and Parallel models, we consider a third type
of model [a ‘Cascade’ model, analogous to the multi-stage model of
disease progression (Armitage and Doll, 1954; Frank, 2004a,b,c)] in
which irreparable damage occurs in a strict sequence. For example,
one way that damage can occur in a sequence is if ‘higher order’
elements can be repaired by ‘lower-order’ elements in a cascad-
ing fashion, such that deterioration follows a strict progression of
stages. Fig. 1 shows schematic diagrams for all three models. Note
that the concept of ‘redundancy’ has a subtly different application
to the Series model, as compared to the Parallel and Cascade mod-

els: in the Parallel and Cascade models, redundant elements are
held ‘in reserve’, whereas in the Series model, they are superfluous.
Although we discuss both continuous- and discrete-time versions
of the three models, here we focus on the latter, which have not
been described previously.
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Second, we build on our earlier work that used an evolution-
ry dynamics approach (specifically, the quasispecies equation) to
emonstrate that redundancy, and hence senescence, can evolve
rom non-redundant, non-senescing ancestral populations (Laird
nd Sherratt, 2009). Thus, we show that redundancy and senes-
ence evolve in the Parallel and Cascade models, but not in the
eries model.

. Derivation of discrete-time senescence models, and
omparison with continuous-time counterparts

.1. Features common to all three models

We modelled three possible systems of irreplaceable elements,
he Series, Parallel, and Cascade models (Fig. 1). In all three models,
ndividuals have n elements. ‘Elements’ are abstractions of genes
r gene products, broadly representing the checks and balances
hat buffer biological systems against failure and allow individ-
al organisms to stay alive. Depending on the context they can be
rofitably thought of as representing, for example, multiple bio-
hemical pathways to the same final product, stages in multi-stage
ancers or other diseases, or even morphological entities such as
ets of teeth. The elements are subject to damage, but the conse-
uences of this damage, and an individual’s ability to deal with it,
iffer among the three models.

For each individual at each time step, each element is damaged
ith probability d, the discrete-time analogue to the failure rate k

n Gavrilov and Gavrilova’s (2001) continuous-time model. In the
eries and Parallel models, each element can be thought of as a
opy, so it is natural to assume that all copies should have the same
ate/probability of breakdown. It is somewhat less obvious why
his should be true in the Cascade model, but we assumed as such
or consistency, analytical tractability, and simplicity (i.e., to start
ith a minimum-assumption model); future work could relax this

ssumption for all three models. Also note that previously damaged
lements can be re-damaged, but this has no additional effect on the
ndividual since ‘undamaged’ and ‘damaged’ are the only possible
tates of an element.

Before proceeding with detailed descriptions of the three mod-
ls, it is important to distinguish our work from an influential class
f models that has arisen over the last 15 years, based on the influ-
ntial ‘Penna bit-string model’ of senescence (see the original paper
y Penna, 1995, and its intellectual progeny, e.g., Coe et al., 2002;
oe and Mao, 2003). In these models, individuals’ genomes are rep-

esented by bit-strings (or continuous equivalents) in which each
it represents a particular age at which harmful deleterious muta-
ions can arise. Thus, Penna-type models are a formalized version of
raditional MA theory (Coe et al., 2002): harm arises due to actively
eleterious genes with time-dependent effects. By contrast, in our

ig. 1. Schematic representation of the three models. Irreplaceable elements are indicat
lements are subject to random damage at a probability of d per time step. This damage
ontinuous path between the circles, the vital function continues to work and the individ
amaged. (b) In the Parallel model, the individual survives until all the elements are dama
ccumulated damage must proceed in order from the lowest to the highest element, w
equence may arise is that higher-order elements are repaired by lower-order elements (
e considered a multi-stage model, with a series of checks and balances preventing diseas
f Armitage and Doll (1954).
tems 99 (2010) 130–139

model, harm arises due to accumulated damage to beneficial genes
or gene products, and time-dependency is an emergent property of
this damage, rather than explicitly built in.

2.2. Series model

Individuals have n elements. These elements are subject to dam-
age, and the vital function ceases to work once any of the n elements
is damaged (i.e., each element is vital, as opposed to redundant).
When an element is damaged the individual dies (Fig. 1a).

We would like to know the probability lint
t that an individual

is still alive at time t in the absence of extrinsic mortality (i.e.,
the expected ‘intrinsic survivorship’). (Throughout this paper, we
will use lint(t) to denote survivorship as a continuous function of
time and lint

t to denote survivorship at discrete time-steps.) This
is equivalent to the probability that none of the n elements has
been damaged, t time steps in a row. Thus, the expected intrinsic
survivorship is given by

lint
t = (1 − d)tn. (2)

The derivation of the continuous-time Series model is similarly
straightforward. The expected survivorship of a particular element
is given by simple exponential decay, e−kt. Since all n elements
must remain undamaged in order that an individual survives, the
expected intrinsic survivorship is given by

lint(t) = e−ktn. (3)

Note that Gavrilov and Gavrilova (2001) examined the similar
yet distinct scenario of multiple series-connected blocks that were
themselves composed of parallel elements, but not in the evolu-
tionary context considered here.

2.3. Parallel model

Individuals have n redundant elements. These elements are sub-
ject to damage, but so long as at least one of an individual’s elements
is undamaged, the corresponding vital function works and the indi-
vidual does not die due to bodily deterioration (Fig. 1b).

The probability that any given element is not damaged in t time
steps is (1 − d)t. Therefore, the probability that that element is dam-
aged in t time steps is 1 − (1 − d)t. The probability that all of the
elements are damaged is (1 − (1 − d)t)n, and hence, the probability
that at least one of the elements remains undamaged is equal to
the expected intrinsic survivorship and is given by
lint
t = 1 − (1 − (1 − d)t)

n
. (4)

As shown by Gavrilov and Gavrilova (2001), and as derived in
Section 1, in continuous time, intrinsic survivorship is given by Eq.
(1).

ed by the black rectangles (here, n = 5 elements). In the discrete-time models, the
breaks the path on which the element is situated. So long as there is at least one
ual survives. (a) In the Series model, the individual dies as soon as one element is
ged. (c) The Cascade model is like the Parallel model, with one additional wrinkle:

ith the direction of damage indicated by arrows. One reason why a strict damage
so long as they themselves are not damaged). Alternatively, the Cascade model can
e progression, as envisioned by Frank (2004a,b,c) and drawing on the classic model
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.4. Cascade model

As with the Parallel model, the elements are subject to dam-
ge, and a single undamaged element is sufficient to prevent death
ue to bodily deterioration. However, in contrast to the Paral-

el model in which the elements work redundantly, here they
ork redundantly and sequentially (Fig. 1c): Element 2 cannot get
amaged without prior damage to Element 1 (Element 1 being
he start of the linear sequence), Element 3 cannot get damaged
ithout prior damage to Element 2, and so on. This means that

lement i can only get damaged if i = 1, or if i > 1 and all elements
, . . ., i − 1 have already been permanently damaged (or are cur-
ently in the process of becoming permanently damaged within
he same time step). Thus, elements are permanently damaged
n a cascading fashion. Such a situation could arise if, for exam-
le, Element 1 repairs Element 2, Element 2 repairs Element 3,
nd so on (nothing repairs Element 1 and Element n repairs no
ther element). In this interpretation, we must assume that the
ime scale of repair is much shorter that the time scale of deteri-
ration, such that if Element n is damaged, it can be repaired by
lement n − 1 (if it is still functioning) sufficiently quickly to pre-
ent death. Alternatively, the Cascade model can be considered as
n analogue of the ‘multi-stage model’ of disease progression where
ndividuals must pass through particular disease stages before
ventually succumbing to the disease when they reach stage n (see
elow).

Let E1 represent the event that after t time steps Element 1
emains undamaged, E2 represent the event that Element 2 remains
ndamaged, and, generically, Ei represent the event that Element
remains undamaged, where i is an integer between 1 and n. The
robability that Element 1 is not damaged in t time steps is

(E1) = (1 − d)t . (5)

The probability that Element 2 is not damaged in t time steps is
qual to the probability Element 1 is not damaged in t time steps
lus the probability that Element 1 is damaged at some time t1, yet
lement 2 is not damaged between t1 and t, inclusive. Because t1
an be any time step between 1 and t, this means that

(E2) = P(E1) +
t∑

t1=1

(1 − d)t1−1d(1 − d)t−t1+1 = P(E1) + td(1 − d)t .

(6)

In general, for i > 1 the probability that Element i is not dam-
ged in t time steps is equal to the probability that Element i − 1
s not damaged in t time steps plus the probability that Elements

through i − 1 are damaged in that interval, yet Element i is not
amaged at the same time as Element i − 1 or thereafter [for i = 1,
he probability that Element i is not damaged in t time steps is
imply given by Eq. (5)]. While there are t ways that exactly one
lement can be damaged in t time steps [Eq. (6)], the number of
ays that exactly i − 1 elements can be damaged in t time steps

s

(
i + t − 2
i − 1

)
. (This is a classic ‘M marbles in B boxes’ combi-

atorics problem where the M marbles are analogous to the i − 1
amaged elements and the B boxes are analogous to the t time
teps.) The probability of each of the ways that exactly i − 1 ele-
ents can be damaged is di−1(1 − d)t. Thus, the probability that
lement i is not damaged in t time steps is given by the recursion
quation:

(Ei) = P(Ei−1) +
(

i + t − 2
i − 1

)
di−1(1 − d)t , (7)
tems 99 (2010) 130–139 133

where P(E0) is defined as 0, and keeping in mind that

(
−1
0

)
= 1,

and

(
w
v

)
= 0 if w < v and both w and v are non-negative integers.

If Element n is permanently damaged, this means that all the
elements must be damaged, and the individual dies. Similarly, if
Element n is not damaged, then by definition not all the elements
are damaged, and the individual does not die due to bodily dete-
rioration. Thus, the expected intrinsic survivorship in the Cascade
model is equal to the probability that Element n is not damaged at
time t and is given by the recursion equation

lint
t = P(En) = P(En−1) +

(
n + t − 2
n − 1

)
dn−1(1 − d)t , (8)

which can be expressed non-recursively as

lint
t =

n∑
i=1

(
i+t−2
i − 1

)
di−1(1 − d)t=(1 − d)t

n∑
i=1

(
i + t − 2
i − 1

)
di−1. (9)

The continuous-time Cascade model’s survivorship equation
can be found by noting the similarity of the Cascade model to the
multi-stage model of disease progression (Armitage and Doll, 1954;
Frank, 2004a,b,c). In this model, individuals start in stage 0, and
must pass through multiple successive stages 1, . . ., n − 1 before
dying when they reach stage n. Frank (2004a) modelled this process
as a system of differential equations:

dx0

dt
= −u0(t)x0(t) − d0(t)x0(t),

dxi

dt
= ui−1(t)xi−1(t) − ui(t)xi(t) − di(t)xi(t), (10)

dxn

dt
= un−1(t)xn−1(t),

where i is an integer between 1 and n − 1, xj(t) is the proportion of
individuals in stage j at time t, uj(t) is the rate at which individuals
advance one stage, and dj(t) is the ‘extrinsic’ death rate from other
causes for individuals in stage j [note that in Eq. (10), the symbol
d is used in a different context than in our discrete-time models].
By setting all uj(t) to the constant continuous failure rate of k, and
setting all dj(t) = 0 (since we would like to know the intrinsic sur-
vivorship), we are left with a continuous version of the Cascade
model:

dx0

dt
= −kx0(t),

dxi

dt
= kxi−1(t) − kxi(t), (11)

dxn

dt
= kxn−1(t).

Following Frank (2004a), the general solution for this model is
the Poisson relationship xi(t) = e−kt(kt)i/i! for i = 0, . . ., n − 1, and the
initial condition that x0(0) = 1 and xi(0) = 0 for i > 0. Because indi-
viduals survive as long as they are in stage n − 1 or lower, intrinsic
survivorship for the continuous-time cascade model is given by

lint(t) =
n−1∑ e−kt(kt)i

= e−kt

n−1∑ (kt)i

(12)
i=0
i!

i=0
i!

Table 1 provides a summary of the discrete- and continuous-
time survivorship equations for the Series, Parallel, and Cascade
models.
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Table 1
Summary of intrinsic survivorship equations for continuous- and discrete-time ver-
sions of the Series, Parallel and Cascade models. lint(t) and lint

t represent expected
intrinsic survivorship as a function of time, t, in the continuous- and discrete-time
models, respectively. n represents the number of elements that compose the vital
function. k and d represent the continuous damage rate and the discrete damage
probability, respectively. Note that for the continuous-time Cascade model, the lim-
its on the index i have been changed from how they appear in Eq. (12) to match the
corresponding discrete-time model.

Model type Continuous time Discrete time

Series lint(t) = e−ktn lint
t = (1 − d)tn

Parallel lint(t) = 1 − (1 − e−kt )
n

lint
t = 1 − (1 − (1 − d)t )

n

n∑ n∑(
i + t − 2

)

2
r

a
a
c
s
i
o
c
A

q

3. Patterns of intrinsic survivorship and mortality in

F
(

F
S
t
n

Cascade lint(t) = e−kt

i=1

(kt)i−1

(i−1)! lint
t = (1 − d)t

i=1
i − 1

di−1

.5. Calculating survivorship, mortality, longevity, and lifetime
eproductive output in discrete-time models

Intrinsic survivorship lint
t represents the mean survivorship to

ge t, provided that there are no extrinsic sources of mortality. This
llowed us to double check the outputs of Eqs. (2), (4), and (9) by
omparing predicted survivorship curves with the mean survivor-
hip curves derived from 100 computer-simulated cohorts of 100
ndividuals. For each of the three models, we examined four levels
f n (n = 1, 5, 10, and 50). In all twelve cases, the simulations and the
orresponding analytical solutions were congruent (see Appendix
in the supplementary material).
The intrinsic mortality probability as a function of age is
int
t =

(lint
t − lint

t+1)

(lint
t )

. (13)

ig. 2. Expected intrinsic survivorship (lint
t ) as a function of age (t; discrete-time) and redu

a) Series model, (b) Parallel model, (c) Cascade model. Survivorship curves represent analy

ig. 3. Expected intrinsic mortality (qint
t ) as a function of age (t; discrete-time) and redund

eries model, (b) Parallel model, (c) Cascade model. Mortality curves represent analytica
he corresponding t-axis in Fig. 2c. This was done to show more of the approach to the mo
ot in the Series model.
tems 99 (2010) 130–139

For a constant extrinsic mortality probability of qext, and assum-
ing that extrinsic and intrinsic mortality are independent, the
overall mortality probability at age t is

qt = qext + qint
t − qextqint

t , (14)

and the overall survivorship at age t is

lt = lint
t (1 − qext)

t
. (15)

Under this overall age-dependent mortality and survivorship,
the mean longevity is

ϕ =
∞∑

t=1

tqt

t−1∏
u=0

(1 − qu) =
∞∑

t=1

lt , (16)

which can be calculated to an arbitrary level of precision using
either mortality or survivorship data.

Lifetime reproductive output is given by the equation:

R =
∞∑

t=1

ltbt, (17)

where bt is the birthrate at age t (Williams and Day, 2003). For
model-exploration purposes it is useful to assume a constant
age- and condition-independent birthrate of b (Laird and Sherratt,
2009). In this case, therefore, R = bϕ. Of course, in real biological sys-
tems birthrates are not constant, but treating them as such avoids
having senescence automatically built into the model.
discrete-time models

In the Series model, redundancy decreases intrinsic survivorship
(Fig. 2a) and increases intrinsic mortality (Fig. 3a) as a consequence

ndancy (n) under an extrinsic mortality rate of qext = 0 and a damage rate of d = 0.1.
tical solutions based on Eqs. (2), (4), and (9), for panels (a), (b), and (c), respectively.

ancy (n) under an extrinsic mortality rate of qext = 0 and a damage rate of d = 0.1. (a)
l solutions based on Eq. (13). Note that the t-axis in panel (c) extends further than
rtality plateau. Actuarial senescence occurs in the Parallel and Cascade models, but
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f more links in the chain. Senescence does not occur for any level
f redundancy; rather mortality rates remain constant at all ages
Fig. 3a).

In contrast, in the Parallel and Cascade models, redundancy
ncreases intrinsic survivorship (Fig. 2b,c) and decreases intrinsic

ortality (Fig. 3b,c). In these two models, senescence occurs in
ases where n > 1, i.e., when redundancy exists (Fig. 3b,c), and the
hape of the mortality curves resembles real curves in that risk
apidly increases early in life before reaching a ‘plateau’ late in life.
he height of the plateau is determined solely by – and is equal
o – the damage rate d, the probability of the last element fail-
ng after all the others have already failed (Gavrilov and Gavrilova,
001). This means that populations that evolved under different

evels of extrinsic mortality (but similar levels of damage) will
ndergo a convergence in their mortality rates late in life (‘mor-
ality compensation’; Gavrilov and Gavrilova, 1991). Thus, along
ith the plateau itself, the reliability theory of senescence readily

enerates aspects of late-life mortality that are difficult to explain
ith other (non-reliability-based) evolutionary theories of senes-

ence (Demetrius, 2001; Pletcher and Curtsinger, 1998; Wachter,
999).

. Relationship between redundancy and lifetime
eproductive output

In the Series model, redundancy reduces lifetime reproduc-
ive output (Fig. 4a). Thus, insofar as lifetime reproductive output
an be taken as a proxy for fitness [e.g., in the case of dis-
rete generations, assuming that there are sufficiently many time
teps per generation (�) that l� ≈ 0], there is strong selection to
educe the number of elements in series-connected systems. In
eality, however, organisms have multiple vital functions, all of
hich must be functioning in order for the individual to survive.

herefore, while one might expect natural selection to reduce the
umber of elements in series within a particular vital function,
ne should not expect natural selection to eliminate series-
onnected elements altogether, especially across multiple vital
unctions.

In the Parallel and Cascade models, redundancy increases life-
ime reproductive output (Fig. 4b,c). Thus, natural selection should
esult in an increased number of parallel and cascading elements
n vital functions (once again insofar as R represents fitness). How-
ver, this directional selection cannot operate indefinitely for three
easons. The first reason is that increased redundancy might come

t a metabolic and ultimately reproductive cost (Frank, 2008), lead-
ng to an optimization of redundancy (i.e., as in the DS model). The
econd reason is that there may be a negative relationship over evo-
utionary time between element quantity and quality (‘the paradox
f robustness’; Frank, 2004b, 2007). The third reason is the one we

ig. 4. Expected lifetime reproductive output (R) in the discrete-time models as a functi
nd a constant birth rate of b = 1 (hence, R is directly proportional to mean longevity). (a)
ifetime reproductive output increases linearly with n only in the Cascade model, and on
tems 99 (2010) 130–139 135

examine here, and is related to the fact that the increase in life-
time reproductive success decelerates at high redundancy (with
the exception of the Cascade model in the case of zero extrin-
sic mortality; Fig. 4c). Under the reasonable assumption of biased
mutation rates, wherein the probability that offspring have fewer
elements than their parents exceeds the probability that offspring
have more elements than their parents (i.e., deleterious mutations
are more common than beneficial ones; Eyre-Walker and Keightley,
2007), decelerating directional selection for redundancy should
eventually face a mutation-selection balance. Previously, we have
demonstrated this for the continuous-time version of the Parallel
model (Laird and Sherratt, 2009). In the next section, we explore
the evolution of redundancy in the discrete-time versions of the
Series, Parallel, and Cascade models.

Unsurprisingly, in all three models, increased extrinsic mortality
decreases lifetime reproductive output (Fig. 4), and also decreases
the benefit of having fewer elements in the Series model, or more
elements in the Parallel and Cascade models.

5. The (limited) evolution of redundancy and its
consequences

Here we assumed that the number of elements n was herita-
ble, and for simplicity we viewed this redundancy trait as if it were
controlled by a single gene. We modelled the evolution of redun-
dancy using the discrete-generation quasispecies equation, which
tracks the relative abundance of N genotypes (corresponding to dif-
ferent levels of n) through evolutionary time (see Nowak (2006)
for an in-depth explanation of the quasispecies equation with
continuously overlapping generations). The discrete-generation
quasispecies equation is a system of recursion equations
given by

x′
i =

∑N
j=1xjfj�ij∑N

h=1

∑N
j=1xjfj�hj

, i = 1, . . . , N, (18)

where xj is the relative abundance of genotype j in the current gen-
eration, fj is the fitness (reproductive success) of genotype j, and
�ij is the transition probability from genotype j to genotype i (i.e.,
the mutation rate when j /= i). Using lifetime reproductive output
(R) as a proxy for fitness, as is appropriate for a discrete-generation
analysis, the numerator of Eq. (18) is the number of genotype i off-
spring produced per individual in the current generation and the

denominator is the total number of offspring produced per indi-
vidual in the current generation. Therefore, the quotient x′

i
is the

relative abundance of genotype i in the next generation. For the
transition rate, we assumed that mutations could only increase n
by one (at a rate of �ij = ˛ when i = j + 1) or decrease n by one (at
a rate �ij = ˇ when i = j − 1; ˛ + ˇ < 1). For example, the transition

on of redundancy (n) and extrinsic mortality (qext), under a damage rate of d = 0.1,
Series model, (b) Parallel model, (c) Cascade model. Surfaces are based on Eq. (17).
ly if qext = 0; otherwise it decelerates (and even decreases in the Series model).
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robability matrix for N = 5 is
“Parent (j)”

� = [�ij] = “Offspring (i)”

⎡
⎢⎣

1 − ˛ ˇ 0 0 0
˛ 1 − ˛ − ˇ ˇ 0 0
0 ˛ 1 − ˛ − ˇ ˇ 0
0 0 ˛ 1 − ˛ − ˇ ˇ
0 0 0 ˛ 1 − ˇ

⎤
⎥⎦

(19)

Reflecting the fact that deleterious mutations are more common
han beneficial ones (Eyre-Walker and Keightley, 2007), we further
ssumed that ˇ > ˛.

Multi-gene (as opposed to single-gene) control of vital functions
s another possibility, and is perhaps particularly relevant for the
ascade model. However, with multi-gene control, the � matrix
ecomes extremely large because there are many more possible
enotypes (2N instead of N). For instance when N = 50, the � matrix
as (250)2 > 1030 entries—far too large for the models to be ana-

ytically tractable. Therefore, we opted to stay with single-gene
ontrol, which we argue below would make only small, quantitative
ifferences to our results. See Frank (2004b) for a computer simula-

ion (i.e., non-analytical approach) in which stages, and transitions
etween stages, are mediated by separate genes.

Fig. 5 (top row) and Appendix B in the supplementary material
how 30,000 generations of discrete-generation quasispecies evo-
ution for the discrete-time Series, Parallel, and Cascade models

ig. 5. Top row: example of discrete-generation quasispecies evolution for the discrete-t
he evolutionary trajectory of the average number of elements (n) over 30,000 generati
ate was qext = 0.02, and the up- and down-mutation rates were ˛ = 0.001 and ˇ = 0.01, re
upplementary material for the evolutionary trajectories of the relative abundances of th
he corresponding stable relative abundance distributions of the 50 genotypes (correspon
he corresponding stable relative abundance distributions of the fifty genotypes (grey bar
tems 99 (2010) 130–139

for example parameter values of d = 0.01, b = 1, qext = 0.02, ˛ = 0.001,
and ˇ = 0.01. As many as N = 50 elements were allowed to evolve [N
must be specified to allow the application Eq. (18)]; however, this
was greater than the number of elements that actually did evolve.
This represents conditions under which the evolved distribution
of n was independent of N, and was the motivation behind the
parameter values chosen for these examples.

In all three cases, at generation 0 every individual had n = 1 ele-
ment (i.e., no redundancy). In the Series model, there was negligible
deviation from the starting conditions over evolutionary time (sta-
ble mean n = 1.004; Fig. 5a). This reflects the fact that for the Series
model, individuals with only one element have the greatest life-
time reproductive output (Fig. 4a), and confirms our prediction that
selection should favour a reduction (or at least resist an increase)
in the number of series-connected elements.

On the other hand, in the Parallel and Cascade models, the
average number of elements increased over evolutionary time
before settling on stable values (approximately 18 and 6 ele-
ments, respectively, in Fig. 5b,c). This reflects the facts that lifetime
reproductive output increases with n in the Parallel and Cas-
cade models, but that this relationship is a decelerating one

(Fig. 4b,c). Hence, these results confirm our prediction that selec-
tion should favour an increase in the number of parallel- or
cascade-connected elements, but only until a mutation-selection
balance is reached. Nunney (1999, 2003) used an altogether dif-
ferent analysis to reach a similar conclusion about the number

ime version of the (a) Series, (b) Parallel, and (c) Cascade models. The panels show
ons. The damage rate was d = 0.01, the birth rate was b = 1, the extrinsic mortality
spectively. At the start, every individual had n = 1 element. See Appendix B in the

e 50 individual genotypes for the same model conditions shown here. Middle row:
ding to 1–50 elements; black bars) after 30,000 recursions of Eq. (18). Bottom row:
s) as determined by eigenvector analysis.
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ig. 6. The equilibrium mean number of elements (mean n, as calculated by eigenv
or the discrete-time version of the (a) Series, (b) Parallel, and (c) Cascade models. I
= 0.01, respectively, and at the start, every individual had n = 1 element.

f tumour-suppressor loci that should evolve for multi-stage
ancers.

We have showed that for certain types of element architec-
ure, redundancy – and, following from Section 3, senescence – can
volve from non-redundant, non-senescing ancestral populations.
Again we stress that this does not mean that longevity decreased
ver evolutionary time; indeed the opposite was true in the Paral-
el and Cascade models.) Moreover, distributions of n (middle row,
ig. 5b,c), which can occur due to a high incidence of initial defects,
r which, as described here, can be maintained at the population
evel via mutation-selection balance, may lead to more biologically
ealistic population mortality curves compared to monocultures
Gavrilov and Gavrilova, 2001; Laird and Sherratt, 2009). In this
xample quasispecies analysis, the mean number of elements that
volved in the Parallel model was roughly three times the number
hat evolved in the Cascade model (compare Fig. 5b,c). Given equal
arameter values, fewer elements evolve in the Cascade model
ecause, with the necessary ordering, it takes far longer before all
lements are damaged.

Importantly, the distributions of n that emerge from the discrete
uasispecies analysis are formal mathematical equilibria, and they
re stable. To see why this is so, consider a modified version of Eq.
18) that operates on absolute abundances (ai) rather than relative
bundances (xi):

′
i =

N∑
j=1

ajfj�ij, i = 1, . . . , n. (20)

This can be converted into matrix form:

a′ = M�a, (21)

here −→ai = [a′
i
] and �a = [ai] are column vectors representing the

bundances of each genotype i in the next and current generation,
espectively, and M = [fj�ij] is the transition matrix incorporating
tness and mutation. Because this is a linear model, the long-term
elative abundances of its variables are stable, even though the
bsolute abundances typically are not (Nowak, 2006; Otto and Day,
006). Additionally, this stable equilibrium relative abundance dis-
ribution is given by the leading eigenvector of M, whose length is
caled so that its elements sum to one (Nowak, 2006; Otto and Day,
006). Indeed, eigenvector analysis gave the same long-term rel-
tive abundance distribution of genotypes as 30,000 generations
f discrete quasispecies evolution (e.g., compare Fig. 5, middle and
ottom rows).

Naturally, precisely how much redundancy evolves depends

n the parameter values chosen. Fig. 6 shows the equilibrium
ean number of elements that evolve for various combinations

f damage rate and extrinsic mortality (d: [0.01, 0.02]; qext: [0.02,
.2]; other parameter values: b = 1, ˛ = 0.001 and ˇ = 0.01). In the
eries model, d and qext have very little effect on the mean n that
analysis) for various combinations of damage rate (d) and extrinsic mortality (qext)
ases, the birth rate was b = 1, the up- and down-mutation rates were ˛ = 0.001 and

evolves; mean n was always approximately 1 (Fig. 6a). Regardless
of the environmental conditions, redundancy is so deleterious in
the Series model that it effectively never evolves.

In contrast, in the Parallel and Cascade models, d has a positive
effect and qext has a negative effect on the evolved mean redun-
dancy (Fig. 6b,c). The explanations for both of these results are
closely linked. Damage rate has a positive effect on the evolution of
redundancy because as damage rate increases, individuals are more
likely to require “backup” elements within their expected lifespan
as partially determined by the extrinsic mortality rate. Similarly,
extrinsic mortality has a negative effect on the evolution of redun-
dancy because as extrinsic mortality increases, individuals require
fewer backups because they will probably not live long enough to
use very many of them. Thus, we predict natural selection to mold
redundancy, and by extension senescence, to the environmental
conditions experienced by an evolving population.

Note that in Fig. 6, the maximum value of d and the minimum
value of qext were chosen to ensure that the maximum number of
elements that were allowed to evolve (50) had a minimal influence
on mean n (e.g., in the Parallel model, when d = 0.02 and qext = 0.02,
mean n at equilibrium was the highest of any of the conditions
examined at 38.7; however, the relative abundance of individu-
als with n = N = 50 elements was only 0.000243). Greater values of
d or smaller values of qext simply lead to a greater mean equi-
librium number of elements in the Parallel and Cascade models;
our qualitative results still hold. Note also that the equilibrium
mean n was the same whether it was calculated after applying
30,000 recursions of the discrete quasispecies equation [Eq. (18)]
or by eigenvector analysis (see Appendix C in the supplementary
material).

Would the results be qualitatively different if we used multi-
gene versus single-gene control? We argue no. Given low and
downwardly biased mutation rates, the probability of offspring
with increased redundancy relative to their parents would decline
very slightly with increasing n, and the probability of offspring with
decreased redundancy would increase very slightly with increas-
ing n, because there are more opportunities for damage to occur at
higher n in multi-gene versus single-gene control. Thus, quantita-
tively, the mutation-selection balance would be shifted slightly to
the left. But qualitatively, there would still be a non-trivial equilib-
rium solution, and there would still be the evolution of redundancy
and senescence from non-redundant, non-senescing populations,
at least in the Parallel and Cascade models.

The differences in average n mean that even when populations
that evolved under different d and qext are brought into captivity

and relieved of extrinsic mortality (i.e., qext is set to 0, but d stays the
same), they still exhibit differences in mean longevity (Fig. 7). In the
Series model, there is essentially no variation in average n for dif-
ferent values of d and qext − all parameter combinations lead to the
evolution of no redundancy (Fig. 6a). Therefore, when populations

Rob
Sticky Note
An error was introduced by the publisher that we failed to detect in the proof stage.Correction:The left-hand side of the first equation in the line immediately after equation (21) should be the same as the left-hand side of equation (21).

Rob
Sticky Note
Unmarked set by Rob



138 R.A. Laird, T.N. Sherratt / BioSystems 99 (2010) 130–139

F tions
a l, and
r n = 1

w
c
v
c
d
a
r

e
m
p
t
i
u

m
m
o
i
e
p
(
b
t
i
t
l
F
e
(
a

6

e
m
w
o
a
s
C
l
r
l
e
m
t
c
T

ig. 7. The mean longevity in captivity (i.e., qext = 0) for mixed-n equilibrium popula
nd extrinsic mortality (qext) for the discrete-time version of the (a) Series, (b) Paralle
ates were ˛ = 0.001 and ˇ = 0.01, respectively, and at the start, every individual had

hose individuals have series-connected elements are brought into
aptivity, there is no effect of qext on mean longevity (Fig. 7a). Con-
ersely, there is a negative effect of damage on mean longevity in
aptivity in the Series model (Fig. 7a). However, this is simply a
irect effect of damage – when essentially all individuals have one
nd only one element, those whose elements are damaged more
eadily are likely to die sooner.

Unlike in the Series model, in the Parallel and Cascade mod-
ls there is a negative effect of extrinsic mortality on the evolved
ean n (Fig. 6b,c). Thus, when populations whose individuals have

arallel- or cascade-connected elements are brought into captivity,
hose that originally evolved under relatively high extrinsic mortal-
ty have a shorter mean longevity than those that originally evolved
nder relatively low extrinsic mortality (Fig. 7b,c).

The effect of damage rate on mean longevity in captivity is also
ore subtle in the Parallel and Cascade models. As with the Series
odel, in the Parallel and Cascade models there is a negative effect

f damage rate on mean longevity in captivity (Fig. 7b,c). But, unlike
n the Series model, the direct action of damage is only a partial
xplanation. After all, populations have the potential to ‘com-
ensate’ for increased damage rates by evolving extra elements
Fig. 6b,c). However, because the position of the mutation-selection
alance with respect to n in high- versus low-damage popula-
ions, such compensation does not fully occur; rather, individuals
n populations that evolved under high-d conditions live shorter
han individuals that evolved under low-d conditions, even after
ong-term, cost-free selection to ameliorate the damage (Fig. 7b,c).
or further discussion of the environmental dependence of the
volution of senescence and longevity see, for example, Abrams
1993), Carlson et al. (2007), Keller and Genoud (1997), Reznick et
l. (2004), Stearns et al. (2000), Williams and Day (2003).

. Conclusion

Reliability theory is a powerful approach for understanding the
volution of senescence. In this approach, various elements accu-
ulate damage, ultimately resulting in their bearer’s death. Here,
e derived three discrete-time models, one in which the elements

f a vital function are in series, one in which they are in parallel,
nd one in which they become damaged in a cascading fashion. We
howed that redundancy leads to senescence in the Parallel and
ascade models, but not in the Series model. Further, in the Paral-

el and Cascade models, lifetime reproductive output is related to
edundancy in a positive but decelerating fashion, a situation that
eads to a mutation-selection balance and the evolution of a stable

quilibrium population distribution of redundancy. The arrange-
ents of elements in the Parallel and Cascade models are simplified

o be sure; however, in a general sense, they represent the way
ollections of checks and balances maintain life in real systems.
hus, broadly, senescence may arise because the systems that have
(as calculated by eigenvector analysis) for various combinations of damage rate (d)
(c) Cascade models. In all cases, the birth rate was b = 1, the up- and down-mutation
element.

evolved to allow robust physiological functioning ultimately get
damaged, and there is little selection to do anything to improve
their reliability beyond a certain point. In this manner, harm arises
from the inactivity of elements (genes or their products) that accu-
mulate damage over time and ultimately fail to do the organism
good, rather than as a consequence of late-acting actively deleteri-
ous genes.
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Appendix A. Comparison of analytical and simulated survivorship curves 
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Survivorship curves derived from the analytical solutions are the same as the curves generated by 
following the survivorship of simulated cohorts (Fig. A.1). 
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Fig. A.1. Intrinsic survivorship curves (  versus t) for monoculture populations with four different 
levels of redundancy (black, n = 1; red, n = 5; blue, n = 10; green, n = 50), under an extrinsic mortality 
rate of qext = 0 and a damage rate of d = 0.1.  Lines represent analytical solutions based on Eqs. (2), (4), 
and (9), for panels (a), (b), and (c), respectively (i.e., the Series, Parallel, and Cascade models).  Circles 
represent the mean survivorship curves derived from 100 simulated cohorts of 100 individuals (maximum 
t for each line is the age-at-death of the longest-lived of 10,000 individuals in each simulation).  There 
was a good fit between the analytical solutions and the numerical simulations (all r > 0.9999). 
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Appendix B. Discrete-generation quasispecies evolution of genotype relative abundance  
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Figures B.1, B.2, and B.3 show examples of the discrete-generation quasispecies evolution for the Series, 
Parallel, and Cascade models, respectively.  
  

 
 
Fig. B.1. Example of discrete-generation quasispecies evolution for the discrete-time version of the Series 
model.  The figure shows the evolutionary trajectories of the relative abundances of 50 genotypes 
(colours, corresponding to individuals with n = 1 to 50 series elements) over 30,000 generations.  The 
damage rate was d = 0.01, the birth rate was b = 1, the extrinsic mortality rate was qext = 0.02, and the up- 
and down-mutation rates were α = 0.001 and β = 0.01, respectively.  At the start, every individual had n = 
1 element and very little changed over 30,000 generations: the line with a relative abundance close to 1 
represents the n = 1 genotype; all other lines (genotypes) overlapped with relative abundances close to 0.  
The stable equilibrium distribution of genotypes is shown in the bottom panel of Fig. 5a in the main text. 
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Fig. B.2. (a) Example of discrete-generation quasispecies evolution for the discrete-time version of the 
Parallel model.  The figure shows the evolutionary trajectories of the relative abundances of 50 genotypes 
(colours, corresponding to individuals with n = 1 to 50 parallel elements) over 30,000 generations.  The 
damage rate was d = 0.01, the birth rate was b = 1, the extrinsic mortality rate was qext = 0.02, and the up- 
and down-mutation rates were α = 0.001 and β = 0.01, respectively.  At the start, every individual had n = 
1 element.  Over the 30,000 generations, a gradual and slowing replacement of the genotypes took place, 
so that eventually there was a stable equilibrium distribution of genotypes (shown for these parameter 
values in the bottom panel of Fig. 5b in the main text.  (b) The same data as shown in panel (a), only with 
a log-transformed x-axis; this was done to better see the early evolutionary dynamics of the relative 
abundances of the different genotypes, the first five of which are noted.  Although in panel (b) it may 
appear that a stable distribution of genotypes has not been approached, this is merely an optical illusion 
caused by the compression of the x-axis.  In fact, the relative abundances of all genotypes changed by less 
than 1% in the last 1000 generations; panel (a) confirms that the relative abundances of the genotypes 
became almost constant well before the end of the quasispecies analysis. 
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Fig. B.3. (a) Example of discrete-generation quasispecies evolution for the discrete-time version of the 
Cascade model.  The figure shows the evolutionary trajectories of the relative abundances of 50 
genotypes (colours, corresponding to individuals with n = 1 to 50 elements that repair one another in a 
cascading fashion) over 30,000 generations.  The damage rate was d = 0.01, the birth rate was b = 1, the 
extrinsic mortality rate was qext = 0.02, and the up- and down-mutation rates were α = 0.001 and β = 0.01, 
respectively.  At the start, every individual had n = 1 element. Over the 30,000 generations, a gradual and 
slowing replacement of the genotypes took place, so that eventually there was a stable equilibrium 
distribution of genotypes (shown for these parameter values in the bottom panel of Fig. 5c in the main 
text.  (b) The same data as shown in panel (a), only with a log-transformed x-axis; this was done to better 
see the early evolutionary dynamics of the relative abundances of the different genotypes, the first five of 
which are noted. 
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Appendix C. Comparison of evolved n and mean longevity derived from eigenvector 
analysis and 30,000 recursions of the discrete quasispecies equation 
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Mean evolved redundancy (Fig. C.1) and mean longevity in captivity (Fig. C.2) are the same whether 
calculated by 30,000 recursions of the discrete quasispecies equation [Eq. (18)] or eigenvector analysis. 
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Fig. C.1. The equilibrium mean number of elements (mean n) as calculated by 30,000 discrete generations 
of quasispecies evolution (symbols) and eigenvector analysis (mesh) for twenty combinations of damage 
rate (d: 0.01, 0.013, 0.016, and 0.019) and extrinsic mortality (qext: 0.02, 0.06, 0.1, 0.14, and 0.18) for the 
discrete-time version of the (a) Series, (b) Parallel, and (c) Cascade models.  In all cases, the birth rate 
was b = 1, the up- and down-mutation rates were α = 0.001 and β = 0.01, respectively, and at the start, 
every individual had n = 1 element.    
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Fig. C.2. The mean longevity in captivity (i.e., qext = 0) for mixed-n populations that originally evolved for 
30,000 discrete generations of quasispecies evolution (symbols) or as determined by eigenvector analysis 
(mesh) for twenty combinations of damage rate (d: 0.01, 0.013, 0.016, and 0.019) and extrinsic mortality 
(qext: 0.02, 0.06, 0.1, 0.14, and 0.18) for the discrete-time version of the (a) Series, (b) Parallel, and (c) 
Cascade models.  In all cases, the birth rate was b = 1, the up- and down-mutation rates were α = 0.001 
and β = 0.01, respectively, and at the start, every individual had n = 1 element. 
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